Search results
Results from the WOW.Com Content Network
The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ(r) = ρ 0 − (ρ 0 − ρ 1) r / R, and the ...
Gravity gradiometry is the study of variations in the Earth's gravity field via measurements of the spatial gradient of gravitational acceleration. The gravity gradient tensor is a 3x3 tensor representing the partial derivatives, along each coordinate axis , of each of the three components of the acceleration vector ( g = [ g x g y g z ] T ...
The Schiehallion experiment, proposed in 1772 and completed in 1776, was the first successful measurement of the mean density of the Earth, and thus indirectly of the gravitational constant. The result reported by Charles Hutton (1778) suggested a density of 4.5 g/cm 3 (4 + 1 / 2 times the density of water), about 20% below the modern ...
The Adams–Williamson equation, named after Leason H. Adams and E. D. Williamson, is an equation used to determine density as a function of radius, more commonly used to determine the relation between the velocities of seismic waves and the density of the Earth's interior. [1]
After converting to SI units, Cavendish's value for the Earth's density, 5.448 g cm −3, gives G = 6.74 × 10 −11 m 3 kg –1 s −2, [24] which differs by only 1% from the 2014 CODATA value of 6.67408 × 10 −11 m 3 kg −1 s −2. [25] Today, physicists often use units where the gravitational constant takes a different form.
The component due to the Earth's rotation can then be included, if appropriate, based on a sidereal day relative to the stars (≈366.24 days/year) rather than on a solar day (≈365.24 days/year). That component is perpendicular to the axis of rotation rather than to the surface of the Earth.
Earth's crust and mantle, Mohorovičić discontinuity between bottom of crust and solid uppermost mantle. Earth's mantle extends to a depth of 2,890 km (1,800 mi), making it the planet's thickest layer. [20] [This is 45% of the 6,371 km (3,959 mi) radius, and 83.7% of the volume - 0.6% of the volume is the crust].
The spheroidal shape of the Earth is the result of the interplay between gravity and centrifugal force caused by the Earth's rotation about its axis. [18] [19] In his Principia, Newton proposed the equilibrium shape of a homogeneous rotating Earth was a rotational ellipsoid with a flattening f given by 1/230.