Search results
Results from the WOW.Com Content Network
In physics and mechanics, torque is the rotational analogue of linear force. [1] It is also referred to as the moment of force (also abbreviated to moment). The symbol for torque is typically , the lowercase Greek letter tau. When being referred to as moment of force, it is commonly denoted by M.
A pound-foot (lb⋅ft), abbreviated from pound-force foot (lbf · ft), is a unit of torque representing one pound of force acting at a perpendicular distance of one foot from a pivot point. [2] Conversely one foot pound-force (ft · lbf) is the moment about an axis that applies one pound-force at a radius of one foot.
often simply called moment or torque newton meter (N⋅m) mass: kilogram (kg) normal vector unit varies depending on context atomic number: unitless refractive index: unitless principal quantum number: unitless amount of substance: mole: power: watt (W)
The rate of mass flow per unit area. The common symbols are j, J, φ, or Φ, sometimes with subscript m to indicate mass is the flowing quantity. Its SI units are kg s−1 m−2. mass moment of inertia A property of a distribution of mass in space that measures its resistance to rotational acceleration about an axis. mass number
The newton-metre or newton-meter (also non-hyphenated, newton metre or newton meter; symbol N⋅m [1] or N m [1]) [a] is the unit of torque (also called moment) in the International System of Units (SI). One newton-metre is equal to the torque resulting from a force of one newton applied perpendicularly to the end of a moment arm that is one ...
One transmitter can turn several receivers; if torque is a factor, the transmitter must be physically larger to source the additional current. In a motion picture interlock system, a large motor-driven distributor can drive as many as 20 machines, sound dubbers, footage counters, and projectors.
The angular momentum equation can be used to relate the moment of the resultant force on a body about an axis (sometimes called torque), and the rate of rotation about that axis. Torque and angular momentum are related according to =, just as F = dp/dt in linear dynamics. In the absence of an external torque, the angular momentum of a body ...
The equation for torque is very important in angular mechanics. Torque is rotational force and is determined by a cross product. This makes it a pseudovector. = where is torque, r is radius, and is a cross product. Another variation of this equation is: