Search results
Results from the WOW.Com Content Network
An important property of base-10 logarithms, which makes them so useful in calculations, is that the logarithm of numbers greater than 1 that differ by a factor of a power of 10 all have the same fractional part. The fractional part is known as the mantissa. [b] Thus, log tables need only show the fractional part. Tables of common logarithms ...
Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 = 9,808,357 + 0.09543. We can then get 10 9,808,357 × 10 0.09543 ≈ 1.25 × 10 9,808,357. Similarly, factorials can be approximated by summing the logarithms of the ...
In chemistry the negative of the decimal logarithm, the decimal cologarithm, is indicated by the letter p. [63] For instance, pH is the decimal cologarithm of the activity of hydronium ions (the form hydrogen ions H + take in water). [64] The activity of hydronium ions in neutral water is 10 −7 mol·L −1, hence a pH of 7. Vinegar typically ...
A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. The choice of unit generally indicates the type of quantity and the base of the ...
When a real number like .007 is denoted alternatively by 7.0 × 10 —3 then it is said that the number is represented in scientific notation.More generally, to write a number in the form a × 10 b, where 1 <= a < 10 and b is an integer, is to express it in scientific notation, and a is called the significand or the mantissa, and b is its exponent. [3]
log(10) = 1 + log(1) = 1; The first step in approximating the common logarithm is to put the number given in scientific notation. For example, the number 45 in scientific notation is 4.5 × 10 1, but one will call it a × 10 b. Next, find the logarithm of a, which is between 1 and 10.
A page from Henry Briggs' 1617 Logarithmorum Chilias Prima showing the base-10 (common) logarithm of the integers 0 to 67 to fourteen decimal places. Part of a 20th-century table of common logarithms in the reference book Abramowitz and Stegun. A page from a table of logarithms of trigonometric functions from the 2002 American Practical Navigator.
A plot of the Napierian logarithm for inputs between 0 and 10 8. The 19 degree pages from Napier's 1614 table of logarithms of trigonometric functions Mirifici Logarithmorum Canonis Descriptio. The term Napierian logarithm or Naperian logarithm, named after John Napier, is often used to mean the natural logarithm.