Search results
Results from the WOW.Com Content Network
Existing Eiffel software uses the string classes (such as STRING_8) from the Eiffel libraries, but Eiffel software written for .NET must use the .NET string class (System.String) in many cases, for example when calling .NET methods which expect items of the .NET type to be passed as arguments. So, the conversion of these types back and forth ...
convert a double to an int d2l 8f 1000 1111 value → result convert a double to a long dadd 63 0110 0011 value1, value2 → result add two doubles daload 31 0011 0001 arrayref, index → value load a double from an array dastore 52 0101 0010 arrayref, index, value → store a double into an array dcmpg 98 1001 1000 value1, value2 → result
Number of UTF-16 code units: Java (string-length string) Scheme (length string) Common Lisp, ISLISP (count string) Clojure: String.length string: OCaml: size string: Standard ML: length string: Number of Unicode code points Haskell: string.length: Number of UTF-16 code units Objective-C (NSString * only) string.characters.count: Number of ...
An array data structure can be mathematically modeled as an abstract data structure (an abstract array) with two operations get(A, I): the data stored in the element of the array A whose indices are the integer tuple I. set(A, I, V): the array that results by setting the value of that element to V. These operations are required to satisfy the ...
java.lang.String is Java's basic string type. ... Boxing is the operation of converting a value of a ... // This class is parameterized class Array < T extends Number ...
Some array data structures do not reallocate storage, but do store a count of the number of elements of the array in use, called the count or size. This effectively makes the array a dynamic array with a fixed maximum size or capacity; Pascal strings are examples of this.
Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).
Using a dynamic array, it is possible to implement a stack that can grow or shrink as much as needed. The size of the stack is simply the size of the dynamic array, which is a very efficient implementation of a stack since adding items to or removing items from the end of a dynamic array requires amortized O(1) time.