Search results
Results from the WOW.Com Content Network
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. [1]
A graphical representation of a partially built propositional tableau. In proof theory, the semantic tableau [1] (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux), also called an analytic tableau, [2] truth tree, [1] or simply tree, [2] is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. [1]
With this premise, we also conclude that q=T, p∨q=T, etc. as shown by columns 9–15. The column-11 operator (IF/THEN), shows Modus ponens rule: when p→q=T and p=T only one line of the truth table (the first) satisfies these two conditions. On this line, q is also true. Therefore, whenever p → q is true and p is true, q must also be true.
In instances of modus ponens we assume as premises that p → q is true and p is true. Only one line of the truth table—the first—satisfies these two conditions (p and p → q). On this line, q is also true. Therefore, whenever p → q is true and p is true, q must also be true.
It may be defined either by appending one of the two equivalent axioms (¬q → p) → (((p → q) → p) → p) or equivalently p∨(¬q)∨(p → q) to the axioms of intuitionistic logic, or by explicit truth tables for its operations. In particular, conjunction and disjunction are the same as for Kleene's and Łukasiewicz's logic, while the ...
The stroke is named after Henry Maurice Sheffer, who in 1913 published a paper in the Transactions of the American Mathematical Society [10] providing an axiomatization of Boolean algebras using the stroke, and proved its equivalence to a standard formulation thereof by Huntington employing the familiar operators of propositional logic (AND, OR, NOT).
The predicate calculus goes a step further than the propositional calculus to an "analysis of the inner structure of propositions" [4] It breaks a simple sentence down into two parts (i) its subject (the object (singular or plural) of discourse) and (ii) a predicate (a verb or possibly verb-clause that asserts a quality or attribute of the object(s)).
The most thoroughly researched branch of propositional logic is classical truth-functional propositional logic, [1] in which formulas are interpreted as having precisely one of two possible truth values, the truth value of true or the truth value of false. [19]