Search results
Results from the WOW.Com Content Network
There are various types of potential energy, each associated with a particular type of force. For example, the work of an elastic force is called elastic potential energy; work of the gravitational force is called gravitational potential energy; work of the Coulomb force is called electric potential energy; work of the strong nuclear force or weak nuclear force acting on the baryon charge is ...
Chemical energy is the kind of potential energy "stored" in chemical bonds and is studied in chemistry. [24] Nuclear energy is energy stored in interactions between the particles in the atomic nucleus and is studied in nuclear physics. [25] Electromagnetic energy is in the form of electric charges, magnetic fields, and photons.
potential energy: joule (J) internal energy: joule (J) relativistic mass: kilogram (kg) energy density: joule per cubic meter (J/m 3) specific energy: joule per kilogram (J/kg) voltage also called electric potential difference volt (V) volume: cubic meter (m 3) shear force: velocity: meter per second (m/s)
Download QR code; Print/export Download as PDF; Printable version ... This is a list of potential energy functions that are frequently used in quantum mechanics and ...
The gravitational potential energy is the potential energy an object has because it is within a gravitational field. The magnitude of the force between a point mass, M {\displaystyle M} , and another point mass, m {\displaystyle m} , is given by Newton's law of gravitation : [ 3 ] F = G M m r 2 {\displaystyle F={\frac {GMm}{r^{2}}}}
Potential energy – energy possessed by a body by virtue of its position relative to others, stresses within itself, electric charge, and other factors. [3] [4] Elastic energy – energy of deformation of a material (or its container) exhibiting a restorative force; Gravitational energy – potential energy associated with a gravitational field.
For example, the working fluid in a steam engine sitting on top of Mount Everest has higher total energy due to gravity than it has at the bottom of the Mariana Trench, but the same thermodynamic potentials. This is because the gravitational potential energy belongs to the total energy rather than to thermodynamic potentials such as internal ...
The gravitational potential (V) at a location is the gravitational potential energy (U) at that location per unit mass: =, where m is the mass of the object. Potential energy is equal (in magnitude, but negative) to the work done by the gravitational field moving a body to its given position in space from infinity.