Search results
Results from the WOW.Com Content Network
The Marshall-Edgeworth index, credited to Marshall (1887) and Edgeworth (1925), [11] is a weighted relative of current period to base period sets of prices. This index uses the arithmetic average of the current and based period quantities for weighting. It is considered a pseudo-superlative formula and is symmetric. [12]
For a guide to displaying mathematical equations and formulas, see Help:Displaying a formula; For a guide to editing, see Wikipedia:Contributing to Wikipedia; For an overview of commonly used style guidelines, see Wikipedia:Simplified Manual of Style; For a page on how to use Wikipedia in bite-sized morsels, see Wikipedia:Tips
The weighted arithmetic mean is similar to an ordinary arithmetic mean (the most common type of average), except that instead of each of the data points contributing equally to the final average, some data points contribute more than others.
A weight function is a mathematical device used when performing a sum, integral, or average to give some elements more "weight" or influence on the result than other elements in the same set. The result of this application of a weight function is a weighted sum or weighted average.
The lower weighted median is 2 with partition sums of 0.49 and 0.5, and the upper weighted median is 3 with partition sums of 0.5 and 0.25. In the case of working with integers or non-interval measures, the lower weighted median would be accepted since it is the lower weight of the pair and therefore keeps the partitions most equal. However, it ...
'''bold''' ''italics'' <sup>superscript</sup> <sub>superscript</sub> → bold: → italics: → superscript → subscript <s>strikeout</s> <u>underline</u> <big>big ...
Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned ...
The triangular distribution has a mean equal to the average of the three parameters: μ = a + b + c 3 {\displaystyle \mu ={\frac {a+b+c}{3}}} which (unlike PERT) places equal emphasis on the extreme values which are usually less-well known than the most likely value, and is therefore less reliable.