Search results
Results from the WOW.Com Content Network
Inverse probability weighting is a statistical technique for estimating quantities related to a population other than the one from which the data was collected. Study designs with a disparate sampling population and population of target inference (target population) are common in application. [ 1 ]
The method of inverse probability (assigning a probability distribution to an unobserved variable) is called Bayesian probability, the distribution of data given the unobserved variable is the likelihood function (which does not by itself give a probability distribution for the parameter), and the distribution of an unobserved variable, given ...
In statistics, the Horvitz–Thompson estimator, named after Daniel G. Horvitz and Donovan J. Thompson, [1] is a method for estimating the total [2] and mean of a pseudo-population in a stratified sample by applying inverse probability weighting to account for the difference in the sampling distribution between the collected data and the target population.
For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().
inverse-variance weighting, also known as analytic weights, [24] is when each element is assigned a weight that is the inverse of its (known) variance. [ 25 ] [ 9 ] : 187 When all elements have the same expectancy, using such weights for calculating weighted averages has the least variance among all weighted averages.
where is the Kullback–Leibler divergence, and is the outer product distribution which assigns probability () to each (,).. Notice, as per property of the Kullback–Leibler divergence, that (;) is equal to zero precisely when the joint distribution coincides with the product of the marginals, i.e. when and are independent (and hence observing tells you nothing about ).
L-moments are statistical quantities that are derived from probability weighted moments [12] (PWM) which were defined earlier (1979). [8] PWM are used to efficiently estimate the parameters of distributions expressable in inverse form such as the Gumbel , [ 9 ] the Tukey lambda , and the Wakeby distributions.
The formula in the definition of characteristic function allows us to compute φ when we know the distribution function F (or density f). If, on the other hand, we know the characteristic function φ and want to find the corresponding distribution function, then one of the following inversion theorems can be used. Theorem.