enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reciprocal lattice - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_lattice

    The direct lattice or real lattice is a periodic function in physical space, such as a crystal system (usually a Bravais lattice). The reciprocal lattice exists in the mathematical space of spatial frequencies, known as reciprocal space or k space, which is the dual of physical space considered as a vector space, and the reciprocal lattice is ...

  3. Bravais lattice - Wikipedia

    en.wikipedia.org/wiki/Bravais_lattice

    The seven lattice systems and their Bravais lattices in three dimensions. In geometry and crystallography, a Bravais lattice, named after Auguste Bravais (), [1] is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by

  4. Crystal system - Wikipedia

    en.wikipedia.org/wiki/Crystal_system

    In geometry and crystallography, a Bravais lattice is a category of translative symmetry groups (also known as lattices) in three directions. Such symmetry groups consist of translations by vectors of the form R = n 1 a 1 + n 2 a 2 + n 3 a 3, where n 1, n 2, and n 3 are integers and a 1, a 2, and a 3 are three non-coplanar vectors, called ...

  5. Crystal structure - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure

    Vectors and planes in a crystal lattice are described by the three-value Miller index notation. This syntax uses the indices h, k, and â„“ as directional parameters. [4] By definition, the syntax (hkâ„“) denotes a plane that intercepts the three points a 1 /h, a 2 /k, and a 3 /â„“, or some multiple thereof. That is, the Miller indices are ...

  6. Pearson symbol - Wikipedia

    en.wikipedia.org/wiki/Pearson_symbol

    The letters A, B and C were formerly used instead of S. When the centred face cuts the X axis, the Bravais lattice is called A-centred. In analogy, when the centred face cuts the Y or Z axis, we have B- or C-centring respectively. [3] The fourteen possible Bravais lattices are identified by the first two letters:

  7. Brillouin zone - Wikipedia

    en.wikipedia.org/wiki/Brillouin_zone

    The first Brillouin zone is the locus of points in reciprocal space that are closer to the origin of the reciprocal lattice than they are to any other reciprocal lattice points (see the derivation of the Wigner–Seitz cell). Another definition is as the set of points in k-space that can be reached from the origin without crossing any Bragg plane.

  8. Space group - Wikipedia

    en.wikipedia.org/wiki/Space_group

    The translations form a normal abelian subgroup of rank 3, called the Bravais lattice (so named after French physicist Auguste Bravais). There are 14 possible types of Bravais lattice. The quotient of the space group by the Bravais lattice is a finite group which is one of the 32 possible point groups.

  9. Miller index - Wikipedia

    en.wikipedia.org/wiki/Miller_index

    In either case, one needs to choose the three lattice vectors a 1, a 2, and a 3 that define the unit cell (note that the conventional unit cell may be larger than the primitive cell of the Bravais lattice, as the examples below illustrate). Given these, the three primitive reciprocal lattice vectors are also determined (denoted b 1, b 2, and b 3).