enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    Rational root theorem. In algebra, the rational root theorem (or rational root test, rational zero theorem, rational zero test or p/q theorem) states a constraint on rational solutions of a polynomial equation with integer coefficients and . Solutions of the equation are also called roots or zeros of the polynomial on the left side.

  3. Square root of 2 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_2

    The square root of 2 (approximately 1.4142) is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written in mathematics as 2 {\displaystyle {\sqrt {2}}} or 2 1 / 2 {\displaystyle 2^{1/2}} .

  4. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    Here the function is and therefore the three real roots are 2, -1 and -4. In algebra, a cubic equation in one variable is an equation of the form in which a is not zero. The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of the coefficients a, b, c, and d of the cubic ...

  5. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    Descartes' rule of signs. In mathematics, Descartes' rule of signs, described by René Descartes in his La Géométrie, counts the roots of a polynomial by examining sign changes in its coefficients. The number of positive real roots is at most the number of sign changes in the sequence of polynomial's coefficients (omitting zero coefficients ...

  6. Fundamental theorem of algebra - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of_algebra

    Fundamental theorem of algebra. The fundamental theorem of algebra, also called d'Alembert's theorem[1] or the d'Alembert–Gauss theorem, [2] states that every non- constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex ...

  7. Complex conjugate root theorem - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate_root_theorem

    Complex conjugate root theorem. In mathematics, the complex conjugate root theorem states that if P is a polynomial in one variable with real coefficients, and a + bi is a root of P with a and b real numbers, then its complex conjugate a − bi is also a root of P. [1] It follows from this (and the fundamental theorem of algebra) that, if the ...

  8. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    Geometrical properties of polynomial roots. In mathematics, a univariate polynomial of degree n with real or complex coefficients has n complex roots, if counted with their multiplicities. They form a multiset of n points in the complex plane. This article concerns the geometry of these points, that is the information about their localization ...

  9. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    Square root. Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 52 (5 squared). In mathematics, a square root of a number x is a number y such that ; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1] For example, 4 and −4 are square roots of 16 ...