Search results
Results from the WOW.Com Content Network
A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula
The problem is that we divided both sides by , which involves the indeterminate operation of dividing by zero when = It is generally possible (and advisable) to avoid dividing by any expression that can be zero; however, where this is necessary, it is sufficient to ensure that any values of the variables that make it zero also fail to satisfy ...
Computing the square root of 2 (which is roughly 1.41421) is a well-posed problem. Many algorithms solve this problem by starting with an initial approximation x 0 to , for instance x 0 = 1.4, and then computing improved guesses x 1, x 2, etc. One such method is the famous Babylonian method, which is given by x k+1 = (x k + 2/x k)/2. Another ...
When the task is to find the solution that is the best under some criterion, this is an optimization problem. Solving an optimization problem is generally not referred to as "equation solving", as, generally, solving methods start from a particular solution for finding a better solution, and repeating the process until finding eventually the ...
Orthogonal decomposition methods of solving the least squares problem are slower than the normal equations method but are more numerically stable because they avoid forming the product X T X. The residuals are written in matrix notation as = ^.
To solve the system is to find the value of the unknown vector . [3] [5] A direct method for solving a system of linear equations is to take the inverse of the matrix , then calculate =. However, computing the inverse is computationally expensive.
That cannot be worked out by itself. If the son's age was made known, then there would no longer be two unknowns (variables). The problem then becomes a linear equation with just one variable, that can be solved as described above. To solve a linear equation with two variables (unknowns), requires two related equations.
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [ 1 ] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences . [ 2 ]