Search results
Results from the WOW.Com Content Network
P 0 = P(0) is the initial population size, r = the population growth rate, which Ronald Fisher called the Malthusian parameter of population growth in The Genetical Theory of Natural Selection, [2] and Alfred J. Lotka called the intrinsic rate of increase, [3] [4] t = time. The model can also be written in the form of a differential equation:
Using these techniques, Malthus' population principle of growth was later transformed into a mathematical model known as the logistic equation: = (), where N is the population size, r is the intrinsic rate of natural increase, and K is the carrying capacity of the population. The formula can be read as follows: the rate of change in the ...
In the study of age-structured population growth, probably one of the most important equations is the Euler–Lotka equation.Based on the age demographic of females in the population and female births (since in many cases it is the females that are more limited in the ability to reproduce), this equation allows for an estimation of how a population is growing.
Matrix population models are a specific type of population model that uses matrix algebra. Population models are used in population ecology to model the dynamics of wildlife or human populations. Matrix algebra, in turn, is simply a form of algebraic shorthand for summarizing a larger number of often repetitious and tedious algebraic computations.
This model can be generalized to any number of species competing against each other. One can think of the populations and growth rates as vectors, α 's as a matrix.Then the equation for any species i becomes = (=) or, if the carrying capacity is pulled into the interaction matrix (this doesn't actually change the equations, only how the interaction matrix is defined), = (=) where N is the ...
The table below shows annual population growth rate history and projections for various areas, countries, regions and sub-regions from various sources for various time periods. The right-most column shows a projection for the time period shown using the medium fertility variant. Preceding columns show actual history.
Population size can be influenced by the per capita population growth rate (rate at which the population size changes per individual in the population.) Births, deaths, emigration, and immigration rates all play a significant role in growth rate. The maximum per capita growth rate for a population is known as the intrinsic rate of increase.
At first, the population growth rate is fast, but it begins to slow as the population grows until it levels off to the maximum growth rate, after which it begins to decrease (figure 2). The equation for figure 2 is the differential of equation 1.1 ( Verhulst's 1838 growth model ): [ 13 ]