Search results
Results from the WOW.Com Content Network
The strong product of any two graphs can be constructed as the union of two other products of the same two graphs, the Cartesian product of graphs and the tensor product of graphs. An example of a strong product is the king's graph, the graph of moves of a chess king on a chessboard, which can be constructed as a strong product of path graphs ...
Pages in category "Graph products" The following 12 pages are in this category, out of 12 total. ... Strong product of graphs; T. Tensor product of graphs; V. Vizing ...
In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.
In graph theory, the Shannon capacity of a graph is a graph invariant defined from the number of independent sets of strong graph products. It is named after American mathematician Claude Shannon . It measures the Shannon capacity of a communications channel defined from the graph, and is upper bounded by the Lovász number , which can be ...
In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.
If a connected graph is a Cartesian product, it can be factorized uniquely as a product of prime factors, graphs that cannot themselves be decomposed as products of graphs. [2] However, Imrich & Klavžar (2000) describe a disconnected graph that can be expressed in two different ways as a Cartesian product of prime graphs:
Powers of graphs are referred to using terminology similar to that of exponentiation of numbers: G 2 is called the square of G, G 3 is called the cube of G, etc. [1] Graph powers should be distinguished from the products of a graph with itself, which (unlike powers) generally have many more vertices than the original graph.
Here, the chromatic number of a directed graph is just the chromatic number of the underlying graph, but the tensor product has exactly half the number of edges (for directed edges g→g' in G and h→h' in H, the tensor product G × H has only one edge, from (g,h) to (g',h'), while the product of the underlying undirected graphs would have an ...