Search results
Results from the WOW.Com Content Network
The geologic temperature record are changes in Earth's environment as determined from geologic evidence on multi-million to billion (10 9) year time scales. The study of past temperatures provides an important paleoenvironmental insight because it is a component of the climate and oceanography of the time.
The Earth's average surface absolute temperature for the 1961–1990 period has been derived by spatial interpolation of average observed near-surface air temperatures from over the land, oceans and sea ice regions, with a best estimate of 14 °C (57.2 °F). [44] The estimate is uncertain, but probably lies within 0.5 °C of the true value. [44]
That is, deposits laid down by volcanism or by deposition of sediment derived from weathering detritus (clays, sands etc.). This includes all its fossil content and the information it yields about the history of the Earth: its past climate, geography, geology and the evolution of life on its surface.
[4] [5] The theory can be summarized by the phrase "the present is the key to the past." [6] Hutton also described the concept of deep time. The prevailing conceptualization of Earth history in 18th-century Europe, grounded in a literal interpretation of Christian scripture, was that of a young Earth shaped by catastrophic events.
Deposition is the geological process in which sediments, soil and rocks are added to a landform or landmass. Wind, ice, water, and gravity transport previously weathered surface material, which, at the loss of enough kinetic energy in the fluid, is deposited, building up layers of sediment.
Ice sheet dynamics and continental positions (and linked vegetation changes) have been important factors in the long term evolution of the Earth's climate. [51] There is also a close correlation between CO 2 and temperature, where CO 2 has a strong control over global temperatures in Earth's history. [52]
The "New Core Paradox" [1] posits that the new upward revisions to the empirically measured thermal conductivity of iron [2] [3] [4] at the pressure and temperature conditions of Earth's core imply that the dynamo is thermally stratified at present, driven solely by compositional convection associated with the solidification of the inner core.
Earth cutaway from core to exosphere Geothermal drill machine in Wisconsin, USA. Temperature within Earth increases with depth. Highly viscous or partially molten rock at temperatures between 650 and 1,200 °C (1,200 and 2,200 °F) are found at the margins of tectonic plates, increasing the geothermal gradient in the vicinity, but only the outer core is postulated to exist in a molten or fluid ...