enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Respiratory compensation - Wikipedia

    en.wikipedia.org/wiki/Respiratory_compensation

    Hyperventilation due to the compensation for metabolic acidosis persists for 24 to 48 hours after correction of the acidosis, and can lead to respiratory alkalosis. [3] This compensation process can occur within minutes. [4] In metabolic alkalosis, chemoreceptors sense a deranged acid-base balance with a plasma pH of greater than normal (>7.4 ...

  3. Respiratory alkalosis - Wikipedia

    en.wikipedia.org/wiki/Respiratory_alkalosis

    The diagnosis of respiratory alkalosis is done via test that measure the oxygen and carbon dioxide levels (in the blood), chest x-ray and a pulmonary function test of the individual. [ 1 ] The Davenport diagram is named after Horace W Davenport a teacher and physiologist which allows theoreticians and teachers to graphically describe acid base ...

  4. Winters's formula - Wikipedia

    en.wikipedia.org/wiki/Winters's_formula

    These are characterized by a serum pH below 7.4 (acidosis) or above 7.4 (alkalosis), and whether the cause is from a metabolic process or respiratory process. If the body experiences one of these derangements, the body will try to compensate by inducing an opposite process (e.g. induced respiratory alkalosis for a primary metabolic acidosis). [7]

  5. Effects of high altitude on humans - Wikipedia

    en.wikipedia.org/wiki/Effects_of_high_altitude...

    Full acclimatization requires days or even weeks. Gradually, the body compensates for the respiratory alkalosis by renal excretion of bicarbonate, allowing adequate respiration to provide oxygen without risking alkalosis. It takes about four days at any given altitude and can be enhanced by drugs such as acetazolamide. [23]

  6. Alkalosis - Wikipedia

    en.wikipedia.org/wiki/Alkalosis

    Compensatory mechanism for metabolic alkalosis involve slowed breathing by the lungs to increase serum carbon dioxide, [2] a condition leaning toward respiratory acidosis. As respiratory acidosis often accompanies the compensation for metabolic alkalosis, and vice versa, a delicate balance is created between these two conditions.

  7. Acid–base disorder - Wikipedia

    en.wikipedia.org/wiki/Acid–base_disorder

    Acid–base imbalance is an abnormality of the human body's normal balance of acids and bases that causes the plasma pH to deviate out of the normal range (7.35 to 7.45). In the fetus, the normal range differs based on which umbilical vessel is sampled (umbilical vein pH is normally 7.25 to 7.45; umbilical artery pH is normally 7.18 to 7.38). [1]

  8. Hyperventilation - Wikipedia

    en.wikipedia.org/wiki/Hyperventilation

    The body normally attempts to compensate for this homeostatically, but if this fails or is overridden, the blood pH will rise, leading to respiratory alkalosis. The symptoms of respiratory alkalosis include dizziness, tingling in the lips, hands, or feet, headache, weakness, fainting, and seizures.

  9. Respiratory acidosis - Wikipedia

    en.wikipedia.org/wiki/Respiratory_acidosis

    Chronic respiratory acidosis: HCO 3 − rises 3.5 mEq/L for each 10 mm Hg rise in PaCO 2. The expected change in pH with respiratory acidosis can be estimated with the following equations: [citation needed] Acute respiratory acidosis: Change in pH = 0.08 X ((40 − PaCO 2)/10) Chronic respiratory acidosis: Change in pH = 0.03 X ((40 − PaCO 2)/10)