enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Born–Infeld model - Wikipedia

    en.wikipedia.org/wiki/Born–Infeld_model

    In theoretical physics, the Born–Infeld model or the Dirac–Born–Infeld action is a particular example of what is usually known as a nonlinear electrodynamics.It was historically introduced in the 1930s to remove the divergence of the electron's self-energy in classical electrodynamics by introducing an upper bound of the electric field at the origin.

  3. Classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism

    Classical electromagnetism or classical electrodynamics is a branch of physics that studies the interactions between electric charges and currents using an extension of the classical Newtonian model. It is, therefore, a classical field theory .

  4. Quantum electrodynamics - Wikipedia

    en.wikipedia.org/wiki/Quantum_electrodynamics

    In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. [ 1 ] [ 2 ] [ 3 ] In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. [ 2 ]

  5. André-Marie Ampère - Wikipedia

    en.wikipedia.org/wiki/André-Marie_Ampère

    André-Marie Ampère (UK: / ˈ æ m p ɛər /, US: / ˈ æ m p ɪər /; [1] French: [ɑ̃dʁe maʁi ɑ̃pɛʁ]; 20 January 1775 – 10 June 1836) [2] was a French physicist and mathematician who was one of the founders of the science of classical electromagnetism, which he referred to as electrodynamics.

  6. Introduction to Electrodynamics - Wikipedia

    en.wikipedia.org/.../Introduction_to_Electrodynamics

    Introduction to Electrodynamics is a textbook by physicist David J. Griffiths. Generally regarded as a standard undergraduate text on the subject, [ 1 ] it began as lecture notes that have been perfected over time. [ 2 ]

  7. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.