enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Event (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Event_(probability_theory)

    In probability theory, an event is a set of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]

  3. Collectively exhaustive events - Wikipedia

    en.wikipedia.org/wiki/Collectively_exhaustive_events

    When heads occurs, tails can't occur, or p (heads and tails) = 0, so the outcomes are also mutually exclusive. Another example of events being collectively exhaustive and mutually exclusive at same time are, event "even" (2,4 or 6) and event "odd" (1,3 or 5) in a random experiment of rolling a six-sided die. These both events are mutually ...

  4. Outcome (probability) - Wikipedia

    en.wikipedia.org/wiki/Outcome_(probability)

    For example, when tossing an ordinary coin, one typically assumes that the outcomes "head" and "tail" are equally likely to occur. An implicit assumption that all outcomes are equally likely underpins most randomization tools used in common games of chance (e.g. rolling dice, shuffling cards, spinning tops or wheels, drawing lots, etc.).

  5. Sample space - Wikipedia

    en.wikipedia.org/wiki/Sample_space

    For example, if two fair six-sided dice are thrown to generate two uniformly distributed integers, and , each in the range from 1 to 6, inclusive, the 36 possible ordered pairs of outcomes (,) constitute a sample space of equally likely events. In this case, the above formula applies, such as calculating the probability of a particular sum of ...

  6. Checking whether a coin is fair - Wikipedia

    en.wikipedia.org/wiki/Checking_whether_a_coin_is...

    Two party polling. If a small random sample poll is taken where there are only two mutually exclusive choices, then this is similar to tossing a single coin multiple times using a possibly biased coin. A similar analysis can therefore be applied to determine the confidence to be ascribed to the actual ratio of votes cast.

  7. Probability interpretations - Wikipedia

    en.wikipedia.org/wiki/Probability_interpretations

    This can be represented mathematically as follows: If a random experiment can result in N mutually exclusive and equally likely outcomes and if N A of these outcomes result in the occurrence of the event A, the probability of A is defined by =. There are two clear limitations to the classical definition. [18]

  8. Mutual exclusivity - Wikipedia

    en.wikipedia.org/wiki/Mutual_exclusivity

    In logic, two propositions and are mutually exclusive if it is not logically possible for them to be true at the same time; that is, () is a tautology. To say that more than two propositions are mutually exclusive, depending on the context, means either 1. "() () is a tautology" (it is not logically possible for more than one proposition to be true) or 2.

  9. Probability space - Wikipedia

    en.wikipedia.org/wiki/Probability_space

    This is not a one-to-one correspondence between {0,1} ∞ and [0,1] however: it is an isomorphism modulo zero, which allows for treating the two probability spaces as two forms of the same probability space. In fact, all non-pathological non-atomic probability spaces are the same in this sense.