Search results
Results from the WOW.Com Content Network
For example, if two fair six-sided dice are thrown to generate two uniformly distributed integers, and , each in the range from 1 to 6, inclusive, the 36 possible ordered pairs of outcomes (,) constitute a sample space of equally likely events. In this case, the above formula applies, such as calculating the probability of a particular sum of ...
Flipping a coin leads to two outcomes that are almost equally likely. Up or down? Flipping a brass tack leads to two outcomes that are not equally likely. In some sample spaces, it is reasonable to estimate or assume that all outcomes in the space are equally likely (that they occur with equal probability). For example, when tossing an ordinary ...
A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%).
When heads occurs, tails can't occur, or p (heads and tails) = 0, so the outcomes are also mutually exclusive. Another example of events being collectively exhaustive and mutually exclusive at same time are, event "even" (2,4 or 6) and event "odd" (1,3 or 5) in a random experiment of rolling a six-sided die. These both events are mutually ...
Two party polling. If a small random sample poll is taken where there are only two mutually exclusive choices, then this is similar to tossing a single coin multiple times using a possibly biased coin. A similar analysis can therefore be applied to determine the confidence to be ascribed to the actual ratio of votes cast.
In probability theory, an event is a set of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]
For example, when the trial consists of throwing two dice, the set of all outcomes with a sum of 7 pips may constitute an event, whereas outcomes with an odd number of pips may constitute another event. If the outcome is the element of the elementary event of two pips on the first die and five on the second, then both of the events, "7 pips ...
This can be represented mathematically as follows: If a random experiment can result in N mutually exclusive and equally likely outcomes and if N A of these outcomes result in the occurrence of the event A, the probability of A is defined by =. There are two clear limitations to the classical definition. [18]