Search results
Results from the WOW.Com Content Network
Spectrum continuation analysis (SCA) is a generalization of the concept of Fourier series to non-periodic functions of which only a fragment has been sampled in the time domain. Recall that a Fourier series is only suitable to the analysis of periodic (or finite-domain) functions f(x) with period 2π. It can be expressed as an infinite series ...
There are several ways to mathematically define quasicrystalline patterns. One definition, the "cut and project" construction, is based on the work of Harald Bohr (mathematician brother of Niels Bohr). The concept of an almost periodic function (also called a quasiperiodic function) was studied by Bohr, including work of Bohl and Escanglon. [47]
However, such periodic sequences are repelling rather than attracting, meaning that if the evolving variable is outside the sequence, however close, it will not enter the sequence and in fact, will diverge from it. Thus for almost all initial conditions, the variable evolves chaotically with non-periodic behavior.
Quasiperiodic behavior is almost but not quite periodic. [2] The term used to denote oscillations that appear to follow a regular pattern but which do not have a fixed period. The term thus used does not have a precise definition and should not be confused with more strictly defined mathematical concepts such as an almost periodic function or a ...
General mathematical techniques for analyzing non-periodic functions fall into the category of Fourier analysis. The Fourier transform of a function produces a frequency spectrum which contains all of the information about the original signal, but in a different form.
A periodic function, also called a periodic waveform (or simply periodic wave), is a function that repeats its values at regular intervals or periods. The repeatable part of the function or waveform is called a cycle . [ 1 ]
For non-periodic functions, however, methods with unequally spaced points such as Gaussian quadrature and Clenshaw–Curtis quadrature are generally far more accurate; Clenshaw–Curtis quadrature can be viewed as a change of variables to express arbitrary integrals in terms of periodic integrals, at which point the trapezoidal rule can be ...
The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of amplitude (see below), which are all functions of the magnitude of the differences between the variable's extreme values. In older texts, the phase of a periodic function is sometimes called the amplitude. [1]