enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry.

  3. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Since non-Euclidean geometry is provably relatively consistent with Euclidean geometry, the parallel postulate cannot be proved from the other postulates. In the 19th century, it was also realized that Euclid's ten axioms and common notions do not suffice to prove all of the theorems stated in the Elements. For example, Euclid assumed ...

  4. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    The independence of the parallel postulate from Euclid's other axioms was finally demonstrated by Eugenio Beltrami in 1868. [65] The various attempted proofs of the parallel postulate produced a long list of theorems that are equivalent to the parallel postulate.

  5. Euclid's Elements - Wikipedia

    en.wikipedia.org/wiki/Euclid's_Elements

    The different versions of the parallel postulate result in different geometries. This postulate plagued mathematicians for centuries due to its apparent complexity compared with the other four postulates. Many attempts were made to prove the fifth postulate based on the other four, but they never succeeded.

  6. Playfair's axiom - Wikipedia

    en.wikipedia.org/wiki/Playfair's_axiom

    Given that Playfair's postulate implies that only the perpendicular to the perpendicular is a parallel, the lines of the Euclid construction will have to cut each other in a point. It is also necessary to prove that they will do it in the side where the angles sum to less than two right angles, but this is more difficult. [17]

  7. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    Parallel lines are the subject of Euclid's parallel postulate. [2] Parallelism is primarily a property of affine geometries and Euclidean geometry is a special instance of this type of geometry. In some other geometries, such as hyperbolic geometry , lines can have analogous properties that are referred to as parallelism.

  8. John Playfair - Wikipedia

    en.wikipedia.org/wiki/John_Playfair

    Playfair's textbook Elements of Geometry made a brief expression of Euclid's parallel postulate known now as Playfair's axiom. In 1783 he was a co-founder of the Royal Society of Edinburgh. He served as General Secretary to the society 1798–1819. [2]

  9. Axiom - Wikipedia

    en.wikipedia.org/wiki/Axiom

    Probably the oldest, and most famous, list of axioms are the 4 + 1 Euclid's postulates of plane geometry. The axioms are referred to as "4 + 1" because for nearly two millennia the fifth (parallel) postulate ("through a point outside a line there is exactly one parallel") was suspected of being derivable from the first four. Ultimately, the ...