Search results
Results from the WOW.Com Content Network
An equiangular hexagon with 1:2 edge length ratios, with equilateral triangles. [6] This is spirolateral 2 120°. Direct equiangular hexagons, <6> and <6/2>, have 120° and 60° internal angles respectively. 120° internal angles of an equiangular hexagon, <6> An equiangular hexagon with integer side lengths may be tiled by unit equilateral ...
A non-convex regular polygon is a regular star polygon. The most common example is the pentagram, which has the same vertices as a pentagon, but connects alternating vertices. For an n-sided star polygon, the Schläfli symbol is modified to indicate the density or "starriness" m of the polygon, as {n/m}.
A principal diagonal of a hexagon is a diagonal which divides the hexagon into quadrilaterals. In any convex equilateral hexagon (one with all sides equal) with common side a, there exists [11]: p.184, #286.3 a principal diagonal d 1 such that and a principal diagonal d 2 such that
This formula cannot be used if the quadrilateral is a right kite, since the denominator is zero in that case. If M, N are the midpoints of the diagonals, and E, F are the intersection points of the extensions of opposite sides, then the area of a bicentric quadrilateral is given by
The honeycomb conjecture states that hexagonal tiling is the best way to divide a surface into regions of equal area with the least total perimeter. The optimal three-dimensional structure for making honeycomb (or rather, soap bubbles) was investigated by Lord Kelvin , who believed that the Kelvin structure (or body-centered cubic lattice) is ...
The polygon is the convex hull of its edges. Additional properties of convex polygons include: The intersection of two convex polygons is a convex polygon. A convex polygon may be triangulated in linear time through a fan triangulation, consisting in adding diagonals from one vertex to all other vertices.
For the convex polygon, a linear time algorithm for the minimum-area enclosing rectangle is known. It is based on the observation that a side of a minimum-area enclosing box must be collinear with a side of the convex polygon. [ 1 ]
Any surface is modelled as a tessellation called polygon mesh. If a square mesh has n + 1 points (vertices) per side, there are n squared squares in the mesh, or 2n squared triangles since there are two triangles in a square. There are (n + 1) 2 / 2(n 2) vertices per triangle. Where n is large, this approaches one half. Or, each vertex inside ...