Search results
Results from the WOW.Com Content Network
Parallel task scheduling (also called parallel job scheduling [1] [2] or parallel processing scheduling [3]) is an optimization problem in computer science and operations research. It is a variant of optimal job scheduling .
Task parallelism (also known as function parallelism and control parallelism) is a form of parallelization of computer code across multiple processors in parallel computing environments. Task parallelism focuses on distributing tasks —concurrently performed by processes or threads —across different processors.
In distinction, with fork-and-join approaches, the program starts executing on one processor and the execution splits in a parallel region, which is started when parallel directives are encountered; in a parallel region, the processors execute a parallel task on different data. A typical example is the parallel DO loop, where different ...
Optimal job scheduling is a class of optimization problems related to scheduling. The inputs to such problems are a list of jobs (also called processes or tasks) and a list of machines (also called processors or workers). The required output is a schedule – an assignment of jobs to machines. The schedule should optimize a certain objective ...
Fork–join is the main model of parallel execution in the OpenMP framework, although OpenMP implementations may or may not support nesting of parallel sections. [6] It is also supported by the Java concurrency framework, [ 7 ] the Task Parallel Library for .NET, [ 8 ] and Intel's Threading Building Blocks (TBB). [ 1 ]
Parallel computers can be roughly classified according to the level at which the hardware supports parallelism, with multi-core and multi-processor computers having multiple processing elements within a single machine, while clusters, MPPs, and grids use multiple computers to work on the same task. Specialized parallel computer architectures ...
These tasks are assigned individually to many processors. The amount of work associated with a parallel task is low and the work is evenly distributed among the processors. Hence, fine-grained parallelism facilitates load balancing. [3] As each task processes less data, the number of processors required to perform the complete processing is high.
Loop-level parallelism is a form of parallelism in software programming that is concerned with extracting parallel tasks from loops.The opportunity for loop-level parallelism often arises in computing programs where data is stored in random access data structures.