enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    The eccentricity of an ellipse is strictly less than 1. When circles (which have eccentricity 0) are counted as ellipses, the eccentricity of an ellipse is greater than or equal to 0; if circles are given a special category and are excluded from the category of ellipses, then the eccentricity of an ellipse is strictly greater than 0.

  3. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  4. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    The mean eccentricity of an object is the average eccentricity as a result of perturbations over a given time period. Neptune currently has an instant (current epoch ) eccentricity of 0.011 3 , [ 11 ] but from 1800 to 2050 has a mean eccentricity of 0.008 59 .

  5. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    the eccentricity can be written as a function of the coefficients of the quadratic equation. [18] If 4AC = B 2 the conic is a parabola and its eccentricity equals 1 (provided it is non-degenerate). Otherwise, assuming the equation represents either a non-degenerate hyperbola or ellipse, the eccentricity is given by

  6. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The red ray rotates at a constant angular velocity and with the same orbital time period as the planet, =. S: Sun at the primary focus, C: Centre of ellipse, S': The secondary focus. In each case, the area of all sectors depicted is identical.

  7. Elliptic orbit - Wikipedia

    en.wikipedia.org/wiki/Elliptic_orbit

    Although the eccentricity is 1, this is not a parabolic orbit. Most properties and formulas of elliptic orbits apply. However, the orbit cannot be closed. It is an open orbit corresponding to the part of the degenerate ellipse from the moment the bodies touch each other and move away from each other until they touch each other again.

  8. Flattening - Wikipedia

    en.wikipedia.org/wiki/Flattening

    A circle of radius a compressed to an ellipse. A sphere of radius a compressed to an oblate ellipsoid of revolution. Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution respectively. Other terms used are ellipticity, or oblateness.

  9. Kepler problem - Wikipedia

    en.wikipedia.org/wiki/Kepler_problem

    where (the eccentricity) and (the phase offset) are constants of integration. This is the general formula for a conic section that has one focus at the origin; e = 0 {\displaystyle e=0} corresponds to a circle , e < 1 {\displaystyle e<1} corresponds to an ellipse, e = 1 {\displaystyle e=1} corresponds to a parabola , and e > 1 {\displaystyle e ...