Search results
Results from the WOW.Com Content Network
Every linear programming problem, referred to as a primal problem, can be converted into a dual problem, which provides an upper bound to the optimal value of the primal problem. In matrix form, we can express the primal problem as: Maximize c T x subject to Ax ≤ b, x ≥ 0; with the corresponding symmetric dual problem,
CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...
Written in C++ and published under an MIT license, HiGHS provides programming interfaces to C, Python, Julia, Rust, JavaScript, Fortran, and C#. It has no external dependencies. A convenient thin wrapper to Python is available via the highspy PyPI package. Although generally single-threaded, some solver components can utilize multi-core ...
Coordinate descent is an optimization algorithm that successively minimizes along coordinate directions to find the minimum of a function.At each iteration, the algorithm determines a coordinate or coordinate block via a coordinate selection rule, then exactly or inexactly minimizes over the corresponding coordinate hyperplane while fixing all other coordinates or coordinate blocks.
This problem is known as the primitive circle problem, as it involves searching for primitive solutions to the original circle problem. [9] It can be intuitively understood as the question of how many trees within a distance of r are visible in the Euclid's orchard , standing in the origin.
The Z-ordering can be used to efficiently build a quadtree (2D) or octree (3D) for a set of points. [4] [5] The basic idea is to sort the input set according to Z-order.Once sorted, the points can either be stored in a binary search tree and used directly, which is called a linear quadtree, [6] or they can be used to build a pointer based quadtree.
Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...
f k (2 k a + b) = 3 c(b, k) a + d(b, k). The values of c (or better 3 c) and d can be precalculated for all possible k-bit numbers b, where d(b, k) is the result of applying the f function k times to b, and c(b, k) is the number of odd numbers encountered on the way. [30]