Search results
Results from the WOW.Com Content Network
The logarithm transformation and square root transformation are commonly used for positive data, and the multiplicative inverse transformation (reciprocal transformation) can be used for non-zero data. The power transformation is a family of transformations parameterized by a non-negative value λ that includes the logarithm, square root, and ...
A base-10 log scale is used for the Y-axis of the bottom left graph, and the Y-axis ranges from 0.1 to 1000. The top right graph uses a log-10 scale for just the X-axis, and the bottom right graph uses a log-10 scale for both the X axis and the Y-axis. Presentation of data on a logarithmic scale can be helpful when the data:
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
The log-normal distribution has also been associated with other names, such as McAlister, Gibrat and Cobb–Douglas. [4] A log-normal process is the statistical realization of the multiplicative product of many independent random variables, each of which is positive.
The logarithm transformation is a type of data transformation used to bring the empirical distribution closer to the assumed one. Computational complexity ...
Plot of logit(x) in the domain of 0 to 1, where the base of the logarithm is e. In statistics, the logit (/ ˈ l oʊ dʒ ɪ t / LOH-jit) function is the quantile function associated with the standard logistic distribution. It has many uses in data analysis and machine learning, especially in data transformations.
In probability theory and computer science, a log probability is simply a logarithm of a probability. [1] The use of log probabilities means representing probabilities on a logarithmic scale ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} , instead of the standard [ 0 , 1 ] {\displaystyle [0,1]} unit interval .
The linear–log type of a semi-log graph, defined by a logarithmic scale on the x axis, and a linear scale on the y axis. Plotted lines are: y = 10 x (red), y = x (green), y = log(x) (blue). In science and engineering, a semi-log plot/graph or semi-logarithmic plot/graph has one axis on a logarithmic scale, the other on a linear scale.