enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.

  3. GPT-3 - Wikipedia

    en.wikipedia.org/wiki/GPT-3

    An article in the MIT Technology Review, co-written by Deep Learning critic Gary Marcus, [55] stated that GPT-3's "comprehension of the world is often seriously off, which means you can never really trust what it says." [56] According to the authors, GPT-3 models relationships between words without having an understanding of the meaning behind ...

  4. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    The transformer model has been implemented in standard deep learning frameworks such as TensorFlow and PyTorch. Transformers is a library produced by Hugging Face that supplies transformer-based architectures and pretrained models.

  5. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [1] [2] Like the original Transformer model, [3] T5 models are encoder-decoder Transformers, where the encoder processes the input text, and the decoder generates the output text.

  6. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    BERT is meant as a general pretrained model for various applications in natural language processing. That is, after pre-training, BERT can be fine-tuned with fewer resources on smaller datasets to optimize its performance on specific tasks such as natural language inference and text classification , and sequence-to-sequence-based language ...

  7. Foundation model - Wikipedia

    en.wikipedia.org/wiki/Foundation_model

    A foundation model, also known as large X model (LxM), is a machine learning or deep learning model that is trained on vast datasets so it can be applied across a wide range of use cases. [1] Generative AI applications like Large Language Models are often examples of foundation models.

  8. Fine-tuning (deep learning) - Wikipedia

    en.wikipedia.org/wiki/Fine-tuning_(deep_learning)

    In deep learning, fine-tuning is an approach to transfer learning in which the parameters of a pre-trained neural network model are trained on new data. [1] Fine-tuning can be done on the entire neural network, or on only a subset of its layers, in which case the layers that are not being fine-tuned are "frozen" (i.e., not changed during backpropagation). [2]

  9. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep models (CAP > two) are able to extract better features than shallow models and hence, extra layers help in learning the features effectively. Deep learning architectures can be constructed with a greedy layer-by-layer method. [11] Deep learning helps to disentangle these abstractions and pick out which features improve performance. [8]