Search results
Results from the WOW.Com Content Network
Polymorphism can be distinguished by when the implementation is selected: statically (at compile time) or dynamically (at run time, typically via a virtual function). This is known respectively as static dispatch and dynamic dispatch, and the corresponding forms of polymorphism are accordingly called static polymorphism and dynamic polymorphism.
For example, in the GHC standard library, the class IArray expresses a general immutable array interface. In this class, the type class constraint IArray a e means that a is an array type that contains elements of type e. (This restriction on polymorphism is used to implement unboxed array types, for example.)
In programming languages, ad hoc polymorphism [1] is a kind of polymorphism in which polymorphic functions can be applied to arguments of different types, because a polymorphic function can denote a number of distinct and potentially heterogeneous implementations depending on the type of argument(s) to which it is applied.
Roberts (p. 171) gives a related example in Java, using a Class to represent a stack frame. The example given is a solution to the Tower of Hanoi problem wherein a stack simulates polymorphic recursion with a beginning, temporary and ending nested stack substitution structure. [5]
In programming language theory, subtyping (also called subtype polymorphism or inclusion polymorphism) is a form of type polymorphism.A subtype is a datatype that is related to another datatype (the supertype) by some notion of substitutability, meaning that program elements (typically subroutines or functions), written to operate on elements of the supertype, can also operate on elements of ...
Impredicative polymorphism (also called first-class polymorphism) is the most powerful form of parametric polymorphism. [1]: 340 In formal logic, a definition is said to be impredicative if it is self-referential; in type theory, it refers to the ability for a type to be in the domain of a quantifier it contains. This allows the instantiation ...
Multiple dispatch or multimethods is a feature of some programming languages in which a function or method can be dynamically dispatched based on the run-time (dynamic) type or, in the more general case, some other attribute of more than one of its arguments. [1]
The purpose of bounded quantification is to allow for polymorphic functions to depend on some specific behaviour of objects instead of type inheritance.It assumes a record-based model for object classes, where every class member is a record element and all class members are named functions.