enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. SN2 reaction - Wikipedia

    en.wikipedia.org/wiki/SN2_reaction

    The rate of an S N 2 reaction is second order, as the rate-determining step depends on the nucleophile concentration, [Nu −] as well as the concentration of substrate, [RX]. [1] r = k[RX][Nu −] This is a key difference between the S N 1 and S N 2 mechanisms.

  3. Nucleophilic substitution - Wikipedia

    en.wikipedia.org/wiki/Nucleophilic_substitution

    It is also due to this carbocation intermediate that the product does not have to have inversion. The nucleophile can attack from the top or the bottom and therefore create a racemic product. It is important to use a protic solvent, water and alcohols, since an aprotic solvent could attack the intermediate and cause unwanted product.

  4. Energy profile (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Energy_profile_(chemistry)

    The relative stability of reactant and product does not define the feasibility of any reaction all by itself. For any reaction to proceed, the starting material must have enough energy to cross over an energy barrier. This energy barrier is known as activation energy (∆G ≠) and the rate of reaction is dependent on the height of this barrier ...

  5. Solvent effects - Wikipedia

    en.wikipedia.org/wiki/Solvent_effects

    For S N 1 reactions the solvent's ability to stabilize the intermediate carbocation is of direct importance to its viability as a suitable solvent. The ability of polar solvents to increase the rate of S N 1 reactions is a result of the polar solvent's solvating the reactant intermediate species, i.e., the carbocation, thereby decreasing the ...

  6. Transition state - Wikipedia

    en.wikipedia.org/wiki/Transition_state

    The concept of a transition state has been important in many theories of the rates at which chemical reactions occur. This started with the transition state theory (also referred to as the activated complex theory), which was first developed around 1935 by Eyring, Evans and Polanyi, and introduced basic concepts in chemical kinetics that are still used today.

  7. Substitution reaction - Wikipedia

    en.wikipedia.org/wiki/Substitution_reaction

    The concentration of the substituting nucleophile has no influence on this rate, and an intermediate of reduced coordination number can be detected. The reaction can be described with k 1, k −1 and k 2, which are the rate constants of their corresponding intermediate reaction steps:

  8. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    Even though the theory is widely applicable, it does have limitations. For example, when applied to each elementary step of a multi-step reaction, the theory assumes that each intermediate is long-lived enough to reach a Boltzmann distribution of energies before continuing to the next step. When the intermediates are very short-lived, TST fails ...

  9. Curtin–Hammett principle - Wikipedia

    en.wikipedia.org/wiki/Curtin–Hammett_principle

    The Curtin–Hammett principle is a principle in chemical kinetics proposed by David Yarrow Curtin and Louis Plack Hammett.It states that, for a reaction that has a pair of reactive intermediates or reactants that interconvert rapidly (as is usually the case for conformational isomers), each going irreversibly to a different product, the product ratio will depend both on the difference in ...