enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace transform applied to differential equations - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform_applied...

    In mathematics, the Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions. First consider the following property of the Laplace transform:

  3. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    In mathematics, the Laplace transform, named after Pierre-Simon Laplace (/ l ə ˈ p l ɑː s /), is an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable (in the complex-valued frequency domain, also known as s-domain, or s-plane).

  4. State-transition equation - Wikipedia

    en.wikipedia.org/wiki/State-Transition_Equation

    The state-transition equation is defined as the solution of the linear homogeneous state equation. The linear time-invariant state equation given by = + + (), with state vector x, control vector u, vector w of additive disturbances, and fixed matrices A, B, E can be solved by using either the classical method of solving linear differential equations or the Laplace transform method.

  5. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    The unilateral Laplace transform takes as input a function whose time domain is the non-negative reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, u(t). The entries of the table that involve a time delay τ are required to be causal (meaning that τ > 0).

  6. Integro-differential equation - Wikipedia

    en.wikipedia.org/wiki/Integro-differential_equation

    Consider the following second-order problem, ′ + + = () =, where = {,, <is the Heaviside step function.The Laplace transform is defined by, = {()} = ().Upon taking term-by-term Laplace transforms, and utilising the rules for derivatives and integrals, the integro-differential equation is converted into the following algebraic equation,

  7. Initial value problem - Wikipedia

    en.wikipedia.org/wiki/Initial_value_problem

    The Banach fixed point theorem is then invoked to show that there exists a unique fixed point, which is the solution of the initial value problem. An older proof of the Picard–Lindelöf theorem constructs a sequence of functions which converge to the solution of the integral equation, and thus, the solution of the initial value problem.

  8. Two-sided Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Two-sided_Laplace_transform

    Two-sided Laplace transforms are closely related to the Fourier transform, the Mellin transform, the Z-transform and the ordinary or one-sided Laplace transform. If f ( t ) is a real- or complex-valued function of the real variable t defined for all real numbers, then the two-sided Laplace transform is defined by the integral

  9. Riemann–Lebesgue lemma - Wikipedia

    en.wikipedia.org/wiki/Riemann–Lebesgue_lemma

    In mathematics, the Riemann–Lebesgue lemma, named after Bernhard Riemann and Henri Lebesgue, states that the Fourier transform or Laplace transform of an L 1 function vanishes at infinity. It is of importance in harmonic analysis and asymptotic analysis .