Search results
Results from the WOW.Com Content Network
In statistics, a moving average (rolling average or running average or moving mean [1] or rolling mean) is a calculation to analyze data points by creating a series of averages of different selections of the full data set. Variations include: simple, cumulative, or weighted forms. Mathematically, a moving average is a type of convolution.
In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [ 1 ] [ 2 ] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.
In statistical quality control, an EWMA chart (or exponentially weighted moving average chart) is a type of control chart used to monitor either variables or attributes-type data using the monitored business or industrial process's entire history of output. [1]
For many series, the period is known and a single seasonality term is sufficient. For example, for monthly data one would typically include either a seasonal AR 12 term or a seasonal MA 12 term. For Box–Jenkins models, one does not explicitly remove seasonality before fitting the model.
Ichimoku kinko hyo – a moving average-based system that factors in time and the average point between a candle's high and low; Moving average – an average over a window of time before and after a given time point that is repeated at each time point in the given chart. A moving average can be thought of as a kind of dynamic trend-line.
The moving ranges involved are serially correlated so runs or cycles can show up on the moving average chart that do not indicate real problems in the underlying process. [ 2 ] : 237 In some cases, it may be advisable to use the median of the moving range rather than its average, as when the calculated range data contains a few large values ...
Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned ...
The notation ARMAX(p, q, b) refers to a model with p autoregressive terms, q moving average terms and b exogenous inputs terms. The last term is a linear combination of the last b terms of a known and external time series d t {\displaystyle d_{t}} .