Search results
Results from the WOW.Com Content Network
Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining millions or billions of MOS transistors onto a single chip. VLSI began in the 1970s when MOS integrated circuit (metal oxide semiconductor) chips were developed and then widely adopted, enabling complex semiconductor and telecommunications technologies.
The VLSI Project was a DARPA-program initiated by Robert Kahn in 1978 [1] that provided research funding to a wide variety of university-based teams in an effort to improve the state of the art in microprocessor design, then known as Very Large Scale Integration (VLSI).
The Mead–Conway VLSI chip design revolution, or Mead and Conway revolution, was a very-large-scale integration design revolution starting in 1978 which resulted in a worldwide restructuring of academic materials in computer science and electrical engineering education, and was paramount for the development of industries based on the application of microelectronics.
In semiconductor design, standard-cell methodology is a method of designing application-specific integrated circuits (ASICs) with mostly digital-logic features. Standard-cell methodology is an example of design abstraction, whereby a low-level very-large-scale integration layout is encapsulated into an abstract logic representation (such as a NAND gate).
In computer engineering, a hardware description language (HDL) is a specialized computer language used to describe the structure and behavior of electronic circuits, usually to design application-specific integrated circuits (ASICs) and to program field-programmable gate arrays (FPGAs).
In integrated circuit design, physical design is a step in the standard design cycle which follows after the circuit design.At this step, circuit representations of the components (devices and interconnects) of the design are converted into geometric representations of shapes which, when manufactured in the corresponding layers of materials, will ensure the required functioning of the components.
Electronic design automation (EDA), also referred to as electronic computer-aided design (ECAD), [1] is a category of software tools for designing electronic systems such as integrated circuits and printed circuit boards. The tools work together in a design flow that chip designers use to design and analyze entire semiconductor chips.
The final design, named RISC I, was published in Association for Computing Machinery (ACM) International Symposium on Computer Architecture (ISCA) in 1981. It had 44,500 transistors implementing 31 instructions and a register file containing 78 32-bit registers. This allowed for six register windows containing 14 registers.