Search results
Results from the WOW.Com Content Network
Zero divided by a negative or positive number is either zero or is expressed as a fraction with zero as numerator and the finite quantity as denominator. Zero divided by zero is zero. In 830, Mahāvīra unsuccessfully tried to correct the mistake Brahmagupta made in his book Ganita Sara Samgraha : "A number remains unchanged when divided by zero."
Here "T+" or "T−" denote that the result of the test is positive or negative, respectively. Likewise, "D+" or "D−" denote that the disease is present or absent, respectively. So "true positives" are those that test positive (T+) and have the disease (D+), and "false positives" are those that test positive (T+) but do not have the disease (D ...
For divisors with multiple rules, the rules are generally ordered first for those appropriate for numbers with many digits, then those useful for numbers with fewer digits. To test the divisibility of a number by a power of 2 or a power of 5 (2 n or 5 n, in which n is a positive integer), one only need to look at the last n digits of that number.
Divisors can be negative as well as positive, although often the term is restricted to positive divisors. For example, there are six divisors of 4; they are 1, 2, 4, −1, −2, and −4, but only the positive ones (1, 2, and 4) would usually be mentioned. 1 and −1 divide (are divisors of) every integer.
Because of the rules of division of signed numbers (which states in part that negative divided by positive is negative), − 1 / 2 , −1 / 2 and 1 / −2 all represent the same fraction – negative one-half. And because a negative divided by a negative produces a positive, −1 / −2 represents positive one-half.
The false positive rate (FPR) is the proportion of all negatives that still yield positive test outcomes, i.e., the conditional probability of a positive test result given an event that was not present. The false positive rate is equal to the significance level. The specificity of the test is equal to 1 minus the false positive rate.
the product of a negative number—al-nāqiṣ (loss)—by a positive number—al-zāʾid (gain)—is negative, and by a negative number is positive. If we subtract a negative number from a higher negative number, the remainder is their negative difference. The difference remains positive if we subtract a negative number from a lower negative ...
In these examples, the (negative) least absolute remainder is obtained from the least positive remainder by subtracting 5, which is d. This holds in general. When dividing by d, either both remainders are positive and therefore equal, or they have opposite signs. If the positive remainder is r 1, and the negative one is r 2, then r 1 = r 2 + d.