Search results
Results from the WOW.Com Content Network
For example, squares (resp. triangles) have 4 sides (resp. 3 sides); or compact (resp. Lindelöf) spaces are ones where every open cover has a finite (resp. countable) open subcover. sharp Often, a mathematical theorem will establish constraints on the behavior of some object; for example, a function will be shown to have an upper or lower bound.
This is a list of axioms as that term is understood in mathematics. In epistemology, the word axiom is understood differently; see axiom and self-evidence. Individual axioms are almost always part of a larger axiomatic system.
2. Equivalence class: given an equivalence relation, [] often denotes the equivalence class of the element x. 3. Integral part: if x is a real number, [] often denotes the integral part or truncation of x, that is, the integer obtained by removing all digits after the decimal mark.
Also called infinitesimal calculus A foundation of calculus, first developed in the 17th century, that makes use of infinitesimal numbers. Calculus of moving surfaces an extension of the theory of tensor calculus to include deforming manifolds. Calculus of variations the field dedicated to maximizing or minimizing functionals. It used to be called functional calculus. Catastrophe theory a ...
In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. [1] For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two or more sets is ...
The partial sums of the series 1 + 2 + 3 + 4 + 5 + 6 + ⋯ are 1, 3, 6, 10, 15, etc.The nth partial sum is given by a simple formula: = = (+). This equation was known ...
The most direct solution to a word problem takes the form of a normal form theorem and algorithm which maps every element in an equivalence class of expressions to a single encoding known as the normal form - the word problem is then solved by comparing these normal forms via syntactic equality. [1]
(Because 3(4k + 1) + 1 = 12k + 4 = 4(3k + 1).) In more generality: For all p ≥ 1 and odd h, f p − 1 (2 p h − 1) = 2 × 3 p − 1 h − 1. (Here f p − 1 is function iteration notation.) For all odd h, f(2h − 1) ≤ 3h − 1 / 2 The Collatz conjecture is equivalent to the statement that, for all k in I, there exists an integer n ...