Search results
Results from the WOW.Com Content Network
[1] MAP kinases are found in eukaryotes only, but they are fairly diverse and encountered in all animals, fungi and plants, and even in an array of unicellular eukaryotes. [citation needed] MAPKs belong to the CMGC (CDK/MAPK/GSK3/CLK) kinase group. The closest relatives of MAPKs are the cyclin-dependent kinases (CDKs). [2]
The activators of p38 (MKK3 and MKK6), JNK (MKK4 and MKK7), and ERK (MEK1 and MEK2) define independent MAP kinase signal transduction pathways. [1] The acronym MEK derives from M APK/ E RK K inase. [ 2 ]
Mitogen Activated Protein (MAP) kinase kinase kinase (MAPKKK, [1] MKKK, [2] M3K, [3] or, MAP3K [4]) is a serine/threonine-specific protein kinase which acts upon MAP kinase kinase. Subsequently, MAP kinase kinase activates MAP kinase. Several types of MAPKKK can exist but are mainly characterized by the MAP kinases they activate.
This biochemistry article is a stub. You can help Wikipedia by expanding it.
The protein encoded by this gene is a member of the MAP kinase and JNK family. MAP kinases act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development.
The protein encoded by this gene is a member of the mitogen-activated protein kinase (MAP kinase) family. MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act in a signaling cascade that regulates various cellular processes such as proliferation, differentiation, and cell cycle progression in response to a variety of extracellular signals.
The protein encoded by this gene is a member of the dual-specificity protein kinase family that acts as a mitogen-activated protein (MAP) kinase kinase.MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act as an integration point for multiple biochemical signals.
The protein encoded by this gene is a member of the MAP (mitogen-activated protein) kinase family. MAP kinases are also known as extracellular signal-regulated kinases (ERKs), and are involved in signaling cascades that regulate a number of cellular processes, including proliferation, differentiation, and transcriptional regulation. MAPK15 is ...