enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    Round-by-chop: The base-expansion of is truncated after the ()-th digit. This rounding rule is biased because it always moves the result toward zero. Round-to-nearest: () is set to the nearest floating-point number to . When there is a tie, the floating-point number whose last stored digit is even (also, the last digit, in binary form, is equal ...

  3. Guard digit - Wikipedia

    en.wikipedia.org/wiki/Guard_digit

    The addition of the two numbers is: 0.0256*10^2 2.3400*10^2 + _____ 2.3656*10^2 After padding the second number (i.e., ) with two s, the bit after is the guard digit, and the bit after is the round digit

  4. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    This works equivalently if we choose a different base, notably base 2 for computing since a bit shift is the same as a multiplication or division by an order of 2. Three decimal digits is equivalent to about 10 binary digits, so we should round 0.05 to 10 bits after the binary point. The closest approximation is then 0.0000110011.

  5. Rounding - Wikipedia

    en.wikipedia.org/wiki/Rounding

    In the example from "Double rounding" section, rounding 9.46 to one decimal gives 9.4, which rounding to integer in turn gives 9. With binary arithmetic, this rounding is also called "round to odd" (not to be confused with "round half to odd"). For example, when rounding to 1/4 (0.01 in binary), x = 2.0 ⇒ result is 2 (10.00 in binary)

  6. Machine epsilon - Wikipedia

    en.wikipedia.org/wiki/Machine_epsilon

    This alternative definition is significantly more widespread: machine epsilon is the difference between 1 and the next larger floating point number.This definition is used in language constants in Ada, C, C++, Fortran, MATLAB, Mathematica, Octave, Pascal, Python and Rust etc., and defined in textbooks like «Numerical Recipes» by Press et al.

  7. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    For example, the decimal number 123456789 cannot be exactly represented if only eight decimal digits of precision are available (it would be rounded to one of the two straddling representable values, 12345678 × 10 1 or 12345679 × 10 1), the same applies to non-terminating digits (. 5 to be rounded to either .55555555 or .55555556).

  8. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    For example, while a fixed-point representation that allocates 8 decimal digits and 2 decimal places can represent the numbers 123456.78, 8765.43, 123.00, and so on, a floating-point representation with 8 decimal digits could also represent 1.2345678, 1234567.8, 0.000012345678, 12345678000000000, and so on.

  9. Talk:Rounding - Wikipedia

    en.wikipedia.org/wiki/Talk:Rounding

    I didn't find any description for rounding to the nearest 1/2 integer value, i.e. to values of 0, 0.5, 1, 1.5, etc.--Fkbreitl 12:00, 8 May 2021 (UTC) Not needed (like rounding to some number of fractional digits): this is like doing an exact multiplication by 2, rounding to an integer, and dividing by 2.