Search results
Results from the WOW.Com Content Network
The Himalayas, which stretch over 2400 km between the Namcha Barwa syntaxis at the eastern end of the mountain range and the Nanga Parbat syntaxis at the western end, are the result of an ongoing orogeny — the collision of the continental crust of two tectonic plates, namely, the Indian Plate thrusting into the Eurasian Plate.
The Himalayan range is one of the youngest mountain ranges on Earth and is made up of uplifted sedimentary and metamorphic rocks. It was formed more than 10 mya due to the subduction of the Indian tectonic plate with the Eurasian Plate along the convergent boundary. Due to the continuous movement of the Indian plate, the Himalayas keep rising ...
The Himalayan mountain belt was produced by the collision of the Indian plate and the Eurasian plate. It is structurally dominated by three north-dipping, fault-bound geological units stacked on each other. The major faults are South Tibetan Detachment, the Main Central Thrust, the Main Boundary Thrust and the Main Frontal Thrust. [2]
The Alpide belt or Alpine-Himalayan orogenic belt, [1] or more recently and rarely the Tethyan orogenic belt, is a seismic and orogenic belt that includes an array of mountain ranges extending for more than 15,000 kilometres (9,300 mi) along the southern margin of Eurasia, stretching from Java and Sumatra, through the Indochinese Peninsula, the Himalayas and Transhimalayas, the mountains of ...
In the heart of Asia, deep underground, two huge tectonic plates are crashing into each other — a violent but slow-motion bout of geological bumper cars that over time has sculpted the soaring ...
Map showing Earth's principal tectonic plates and their boundaries in detail. These plates comprise the bulk of the continents and the Pacific Ocean.For purposes of this list, a major plate is any plate with an area greater than 20 million km 2 (7.7 million sq mi)
The Main Frontal Thrust (MFT), also known as the Himalayan Frontal Thrust (HFT), is a geological fault in the Himalayas that defines the boundary between the Himalayan foothills and Indo-Gangetic Plain. [1] The fault is well expressed on the surface thus could be seen via satellite imagery.
These faults accommodated stresses parallel to the MBT and helped the Himalayan mountains grow. [2] Each of these faults served as the primary reliever of strain in the Himalayan Orogeny until being abandoned in a successive chain of intracontinental thrust faults. [3] Currently, the Main Frontal Thrust is the main thrust fault in the system. [4]