Search results
Results from the WOW.Com Content Network
K-type main-sequence stars, also known as orange dwarfs, may be candidates for supporting extraterrestrial life.These stars are known as "Goldilocks stars" as they emit enough radiation in the non-UV ray spectrum [1] to provide a temperature that allows liquid water to exist on the surface of a planet; they also remain stable in the main sequence longer than the Sun by burning their hydrogen ...
No solar twin with an exact match as that of the Sun has been found. However, some stars are nearly identical to the Sun and are considered solar twins. An exact solar twin would be a G2V star with a 5,778 K temperature, be 4.6 billion years old, with the correct metallicity and a 0.1% solar luminosity variation. [152] Stars with an age of 4.6 ...
K-type main-sequence stars are about three to four times as abundant as G-type main-sequence stars, making planet searches easier. [17] K-type stars emit less total ultraviolet and other ionizing radiation than G-type stars like the Sun (which can damage DNA and thus hamper the emergence of nucleic acid based life). In fact, many peak in the red.
For premium support please call: 800-290-4726 more ways to reach us
A G-type main-sequence star (spectral type: G-V), also often, and imprecisely, called a yellow dwarf, or G star, is a main-sequence star (luminosity class V) of spectral type G. Such a star has about 0.9 to 1.1 solar masses and an effective temperature between about 5,300 and 6,000 K (5,000 and 5,700 °C ; 9,100 and 10,000 °F ).
Below there are lists the nearest stars separated by spectral type. The scope of the list is still restricted to the main sequence spectral types: M, K, F, G, A, B and O. It may be later expanded to other types, such as S, D or C. The Alpha Centauri star system is the closest star system to the Sun.
For premium support please call: 800-290-4726 more ways to reach us
The separation between stars in a binary may range from less than one astronomical unit (au, the "average" Earth-to-Sun distance) to several hundred au. In latter instances, the gravitational effects will be negligible on a planet orbiting an otherwise suitable star, and habitability potential will not be disrupted unless the orbit is highly ...