Search results
Results from the WOW.Com Content Network
Grubbs's test is based on the assumption of normality. That is, one should first verify that the data can be reasonably approximated by a normal distribution before applying the Grubbs test. [2] Grubbs's test detects one outlier at a time. This outlier is expunged from the dataset and the test is iterated until no outliers are detected.
Cochran's test, [1] named after William G. Cochran, is a one-sided upper limit variance outlier statistical test .The C test is used to decide if a single estimate of a variance (or a standard deviation) is significantly larger than a group of variances (or standard deviations) with which the single estimate is supposed to be comparable.
To apply a Q test for bad data, arrange the data in order of increasing values and calculate Q as defined: Q = gap range {\displaystyle Q={\frac {\text{gap}}{\text{range}}}} Where gap is the absolute difference between the outlier in question and the closest number to it.
This is an important technique in the detection of outliers. It is among several named in honor of William Sealey Gosset, who wrote under the pseudonym "Student" (e.g., Student's distribution). Dividing a statistic by a sample standard deviation is called studentizing, in analogy with standardizing and normalizing.
The modified Thompson Tau test is used to find one outlier at a time (largest value of δ is removed if it is an outlier). Meaning, if a data point is found to be an outlier, it is removed from the data set and the test is applied again with a new average and rejection region. This process is continued until no outliers remain in a data set.
The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...
In the presence of outliers that do not come from the same data-generating process as the rest of the data, least squares estimation is inefficient and can be biased. Because the least squares predictions are dragged towards the outliers, and because the variance of the estimates is artificially inflated, the result is that outliers can be masked.
In data sets containing real-numbered measurements, the suspected outliers are the measured values that appear to lie outside the cluster of most of the other data values. . The outliers would greatly change the estimate of location if the arithmetic average were to be used as a summary statistic of locati