Search results
Results from the WOW.Com Content Network
Examples of don't-care terms are the binary values 1010 through 1111 (10 through 15 in decimal) for a function that takes a binary-coded decimal (BCD) value, because a BCD value never takes on such values (so called pseudo-tetrades); in the pictures, the circuit computing the lower left bar of a 7-segment display can be minimized to a b + a c by an appropriate choice of circuit outputs for ...
A Karnaugh map (KM or K-map) is a diagram that can be used to simplify a Boolean algebra expression. Maurice Karnaugh introduced it in 1953 [1] [2] as a refinement of Edward W. Veitch's 1952 Veitch chart, [3] [4] which itself was a rediscovery of Allan Marquand's 1881 logical diagram [5] [6] (aka. Marquand diagram [4]).
All concrete Boolean algebras satisfy the laws (by proof rather than fiat), whence every concrete Boolean algebra is a Boolean algebra according to our definitions. This axiomatic definition of a Boolean algebra as a set and certain operations satisfying certain laws or axioms by fiat is entirely analogous to the abstract definitions of group ...
Boole's expansion theorem, often referred to as the Shannon expansion or decomposition, is the identity: = + ′ ′, where is any Boolean function, is a variable, ′ is the complement of , and and ′ are with the argument set equal to and to respectively.
The Quine–McCluskey algorithm is functionally identical to Karnaugh mapping, but the tabular form makes it more efficient for use in computer algorithms, and it also gives a deterministic way to check that the minimal form of a Boolean F has been reached. It is sometimes referred to as the tabulation method.
The term "Boolean algebra" honors George Boole (1815–1864), a self-educated English mathematician. He introduced the algebraic system initially in a small pamphlet, The Mathematical Analysis of Logic, published in 1847 in response to an ongoing public controversy between Augustus De Morgan and William Hamilton, and later as a more substantial book, The Laws of Thought, published in 1854.
The Boolean satisfiability problem on conjunctive normal form formulas is NP-complete. By the duality principle, so is the falsifiability problem on DNF formulas. Therefore, it is co-NP-hard to decide if a DNF formula is a tautology. Conversely, a DNF formula is satisfiable if, and only if, one of its conjunctions is satisfiable.
An important set of problems in computational complexity involves finding assignments to the variables of a Boolean formula expressed in conjunctive normal form, such that the formula is true. The k -SAT problem is the problem of finding a satisfying assignment to a Boolean formula expressed in CNF in which each disjunction contains at most k ...