enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generalized linear mixed model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_mixed_model

    In statistics, a generalized linear mixed model (GLMM) is an extension to the generalized linear model (GLM) in which the linear predictor contains random effects in addition to the usual fixed effects. [1] [2] [3] They also inherit from generalized linear models the idea of extending linear mixed models to non-normal data.

  3. Mixed model - Wikipedia

    en.wikipedia.org/wiki/Mixed_model

    Linear mixed models (LMMs) are statistical models that incorporate fixed and random effects to accurately represent non-independent data structures. LMM is an alternative to analysis of variance . Often, ANOVA assumes the independence of observations within each group, however, this assumption may not hold in non-independent data, such as ...

  4. Multilevel model - Wikipedia

    en.wikipedia.org/wiki/Multilevel_model

    Multilevel models (also known as hierarchical linear models, linear mixed-effect models, mixed models, nested data models, random coefficient, random-effects models, random parameter models, or split-plot designs) are statistical models of parameters that vary at more than one level. [1]

  5. Generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_model

    In statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression.The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.

  6. Hierarchical generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_generalized...

    Moreover, the generalized linear mixed model (GLMM) is a special case of the hierarchical generalized linear model. In hierarchical generalized linear models, the distributions of random effect do not necessarily follow normal distribution. If the distribution of is normal and the link function of is the identity function, then hierarchical ...

  7. Nonlinear mixed-effects model - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_mixed-effects_model

    Nonlinear mixed-effects models constitute a class of statistical models generalizing linear mixed-effects models. Like linear mixed-effects models, they are particularly useful in settings where there are multiple measurements within the same statistical units or when there are dependencies between measurements on related statistical units.

  8. Best linear unbiased prediction - Wikipedia

    en.wikipedia.org/wiki/Best_linear_unbiased...

    Best linear unbiased predictions are similar to empirical Bayes estimates of random effects in linear mixed models, except that in the latter case, where weights depend on unknown values of components of variance, these unknown variances are replaced by sample-based estimates.

  9. Restricted maximum likelihood - Wikipedia

    en.wikipedia.org/wiki/Restricted_maximum_likelihood

    REML estimation is implemented in Surfstat, a Matlab toolbox for the statistical analysis of univariate and multivariate surface and volumetric neuroimaging data using linear mixed effects models and random field theory, [6] [7] but more generally in the fitlme package for modeling linear mixed effects models in a domain-general way. [8]