Search results
Results from the WOW.Com Content Network
Most 1-bromoalkanes are prepared by free-radical addition of hydrogen bromide to the 1-alkene, which is 1-pentene in the case of 1-bromopentane. These conditions lead to anti-Markovnikov addition, giving the 1-bromo derivative. [2] It is also formed by the reaction of 1-pentanol with hydrogen bromide.
RCH=CH 2 + HBr → RCHBrCH 3. Under free radical conditions, the direction of the addition can be reversed. Free-radical addition is used commercially for the synthesis of 1-bromoalkanes, precursors to tertiary amines and quaternary ammonium salts. 2-Phenethyl bromide (C 6 H 5 CH 2 CH 2 Br) is produced via this route from styrene.
In organic chemistry, the Doering–LaFlamme allene synthesis is a reaction of alkenes that converts them to allenes by insertion of a carbon atom. [1] This name reaction is named for William von Eggers Doering and a co-worker, who first reported it.
Monobromopentanes are bromopentanes containing one bromine atom, with the formula C 5 H 11 Br. There are three isomers of unbranched monobromopentane: 1-Bromopentane; 2-Bromopentane [1] (chiral) 3-Bromopentane; There are four isomers of monobromopentane based on 2-methylbutane: 1-Bromo-2-methylbutane (chiral) 1-Bromo-3-methylbutane; 2-Bromo-2 ...
One attractive feature of the Peterson olefination is that it can be used to prepare either cis- or trans-alkenes from the same β-hydroxysilane. Treatment of the β-hydroxysilane with acid will yield one alkene, while treatment of the same β-hydroxysilane with base will yield the alkene of opposite stereochemistry.
Wittig reactions are most commonly used to convert aldehydes and ketones to alkenes. [1] [2] [3] Most often, the Wittig reaction is used to introduce a methylene group using methylenetriphenylphosphorane (Ph 3 P=CH 2). Using this reagent, even a sterically hindered ketone such as camphor can be converted to its methylene derivative.
On the left, a filled pi-orbital on C 2 H 4 overlaps with an empty d-orbital on the metal. On the right, an empty pi-antibonding orbital on C 2 H 4 overlaps with a filled d-orbital on the metal. The Dewar–Chatt–Duncanson model is a model in organometallic chemistry that explains the chemical bonding in transition metal alkene complexes.
The following 5 pages are in this category, out of 5 total. This list may not reflect recent changes. A. Allyl bromide; D. 1,2-Dibromoethylene; T. Tetrabromoethylene;