Search results
Results from the WOW.Com Content Network
In machine learning, feature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Feature selection techniques are used for several reasons: simplification of models to make them easier to interpret, [1] shorter training times, [2] to avoid the curse of dimensionality, [3]
Feature engineering in machine learning and statistical modeling involves selecting, creating, transforming, and extracting data features. Key components include feature creation from existing data, transforming and imputing missing or invalid features, reducing data dimensionality through methods like Principal Components Analysis (PCA), Independent Component Analysis (ICA), and Linear ...
Relief is an algorithm developed by Kira and Rendell in 1992 that takes a filter-method approach to feature selection that is notably sensitive to feature interactions. [1] [2] It was originally designed for application to binary classification problems with discrete or numerical features.
In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a data set. [1] Choosing informative, discriminating, and independent features is crucial to produce effective algorithms for pattern recognition , classification , and regression tasks.
In machine learning (ML), feature learning or representation learning [2] is a set of techniques that allow a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a ...
Machine learning and data mining often employ the same methods and overlap significantly, but while machine learning focuses on prediction, based on known properties learned from the training data, data mining focuses on the discovery of (previously) unknown properties in the data (this is the analysis step of knowledge discovery in databases).
The third generation of Feature Selection Toolbox (FST3) was a library without user interface, written to be more efficient and versatile than the original FST1. [3]FST3 supports several standard data mining tasks, more specifically, data preprocessing and classification, but its main focus is on feature selection.
This method was first proposed in 2003 by Hanchuan Peng and Chris Ding, [1] followed by a theoretical formulation based on mutual information, along with the first definition of multivariate mutual information, published in IEEE Trans. Pattern Analysis and Machine Intelligence in 2005. [2] Feature selection, one of the basic problems in pattern ...