Search results
Results from the WOW.Com Content Network
Demethylation (the transfer of the methyl group to another compound) is a common process, and reagents that undergo this reaction are called methylating agents. Common methylating agents are dimethyl sulfate, methyl iodide, and methyl triflate. Methanogenesis, the source of natural gas, arises via a demethylation reaction. [8]
For example, ethyl comes before dihydroxy or dimethyl, as the "e" in "ethyl" precedes the "h" in "dihydroxy" and the "m" in "dimethyl" alphabetically. The "di" is not considered in either case). When both side chains and secondary functional groups are present, they should be written mixed together in one group rather than in two separate groups.
The methyl "substituent" or "group" is highlighted red. According to the usual rules of nomenclature, alkyl groups are included in the name of the molecule before the root, as in methylpentane. This name is, however, ambiguous, as the methyl branch could be on various carbon atoms.
Ethyl sulfate can be produced in a laboratory setting by reacting ethanol with sulfuric acid under a gentle boil, while keeping the reaction below 140 °C. The sulfuric acid must be added dropwise or the reaction must be actively cooled because the reaction itself is highly exothermic.
Alkyl sulfates consist of a hydrophobic hydrocarbon chain, a polar sulfate group (containing an anion) and either a cation or amine to neutralize the sulfate group. Examples include: sodium lauryl sulfate (also known as sulfuric acid mono dodecyl ester sodium salt) and related potassium and ammonium salts.
The Leuckart reaction is the chemical reaction that converts aldehydes or ketones to amines. The reaction is an example of reductive amination. [1] The reaction, named after Rudolf Leuckart, uses either ammonium formate or formamide as the nitrogen donor and reducing agent. It requires high temperatures, usually between 120 and 130 °C; for the ...
If the alcohol produced by the reaction can be separated from the reactants by distillation this will drive the equilibrium toward the products. This means that esters with larger alkoxy groups can be made from methyl or ethyl esters in high purity by heating the mixture of ester, acid/base, and large alcohol.
The Acetyl-CoA pathway for mercury methylation is done by sulfate reducing bacteria and is catalyzed by a corrinoid dependent protein. Through this pathway, the methyl group is proposed to originate from C-3 serine. A transfer of the methyl group from CH3-Tetrahydrofolate to the corrinoid protein requires the genes hgcA and hgcB. [4]