Search results
Results from the WOW.Com Content Network
In geometry, circular symmetry is a type of continuous symmetry for a planar object that can be rotated by any arbitrary angle and map onto itself. Rotational circular symmetry is isomorphic with the circle group in the complex plane , or the special orthogonal group SO(2), and unitary group U(1).
Thus, a symmetry can be thought of as an immunity to change. [2] For instance, a circle rotated about its center will have the same shape and size as the original circle, as all points before and after the transform would be indistinguishable. A circle is thus said to be symmetric under rotation or to have rotational symmetry.
Symmetry (left) and asymmetry (right) A spherical symmetry group with octahedral symmetry. The yellow region shows the fundamental domain. A fractal-like shape that has reflectional symmetry, rotational symmetry and self-similarity, three forms of symmetry. This shape is obtained by a finite subdivision rule.
There is no geometric figure that has as full symmetry group the circle group, but for a vector field it may apply (see the three-dimensional case below). the orthogonal group O(2) consisting of all rotations about a fixed point and reflections in any axis through that fixed point. This is the symmetry group of a circle.
The circle is a highly symmetric shape: every line through the centre forms a line of reflection symmetry, and it has rotational symmetry around the centre for every angle. Its symmetry group is the orthogonal group O(2, R ).
The symmetry group of an n-sided regular polygon is the dihedral group D n (of order 2n): D 2, D 3, ... For a regular n-gon inscribed in a circle of radius ...
This means that, thinking in terms of symmetry, a compact symmetry group acting continuously can be expected to have one-parameter circle subgroups acting; the consequences in physical systems are seen, for example, at rotational invariance and spontaneous symmetry breaking. The circle group has many subgroups, but its only proper closed ...
Finite spherical symmetry groups are also called point groups in three dimensions.There are five fundamental symmetry classes which have triangular fundamental domains: dihedral, cyclic, tetrahedral, octahedral, and icosahedral symmetry.