Search results
Results from the WOW.Com Content Network
In category theory, a branch of mathematics, an initial object of a category C is an object I in C such that for every object X in C, there exists precisely one morphism I → X. The dual notion is that of a terminal object (also called terminal element ): T is terminal if for every object X in C there exists exactly one morphism X → T .
The empty set serves as the initial object in Set with empty functions as morphisms. Every singleton is a terminal object, with the functions mapping all elements of the source sets to the single target element as morphisms. There are thus no zero objects in Set. The category Set is complete and co-complete.
In the category of sets, morphisms are functions and the terminal objects are singletons.Therefore, a morphism : is a function from a singleton {} to the set : since a function must specify a unique element in the codomain for every element in the domain, we have that () is one specific element of .
Examples of limits and colimits in Top include: The empty set (considered as a topological space) is the initial object of Top; any singleton topological space is a terminal object. There are thus no zero objects in Top. The product in Top is given by the product topology on the Cartesian product.
Examples of limits and colimits in Ring include: The ring of integers Z is an initial object in Ring. The zero ring is a terminal object in Ring. The product in Ring is given by the direct product of rings. This is just the cartesian product of the underlying sets with addition and multiplication defined component-wise.
The unit type is the terminal object in the category of types and typed functions. It should not be confused with the zero or empty type, which allows no values and is the initial object in this category. Similarly, the Boolean is the type with two values. The unit type is implemented in most functional programming languages.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Universal constructions are functorial in nature: if one can carry out the construction for every object in a category C then one obtains a functor on C. Furthermore, this functor is a right or left adjoint to the functor U used in the definition of the universal property. [2] Universal properties occur everywhere in mathematics.