Search results
Results from the WOW.Com Content Network
For example, the initial object in any concrete category with free objects will be the free object generated by the empty set (since the free functor, being left adjoint to the forgetful functor to Set, preserves colimits). Initial and terminal objects may also be characterized in terms of universal properties and adjoint functors.
Let C be a category with finite products and a terminal object 1. A list object over an object A of C is: an object L A, a morphism o A : 1 → L A, and; a morphism s A : A × L A → L A; such that for any object B of C with maps b : 1 → B and t : A × B → B, there exists a unique f : L A → B such that the following diagram commutes:
Examples of limits and colimits in Ring include: The ring of integers Z is an initial object in Ring. The zero ring is a terminal object in Ring. The product in Ring is given by the direct product of rings. This is just the cartesian product of the underlying sets with addition and multiplication defined component-wise.
For a category C, the following are all equivalent: C is finitely complete, C has equalizers and all finite products, C has equalizers, binary products, and a terminal object, C has pullbacks and a terminal object. The dual statements are also equivalent. A small category C is complete if and only if it is cocomplete. [1]
Dually, a final coalgebra is a terminal object in the category of F-coalgebras. The finality provides a general framework for coinduction and corecursion. For example, using the same functor 1 + (−) as before, a coalgebra is defined as a set X together with a function f : X → (1 + X).
Define the diagonal functor Δ : C → C J as follows: Δ(N) : J → C is the constant functor to N for all N in C. If F is a diagram of type J in C, the following statements are equivalent: ψ is a cone from N to F; ψ is a natural transformation from Δ(N) to F (N, ψ) is an object in the comma category (Δ ↓ F) The dual statements are also ...
Given a diagram F: J → C (thought of as an object in C J), a natural transformation ψ : Δ(N) → F (which is just a morphism in the category C J) is the same thing as a cone from N to F. To see this, first note that Δ(N)(X) = N for all X implies that the components of ψ are morphisms ψ X : N → F(X), which all share the domain N.
Universal constructions are functorial in nature: if one can carry out the construction for every object in a category C then one obtains a functor on C. Furthermore, this functor is a right or left adjoint to the functor U used in the definition of the universal property. [2] Universal properties occur everywhere in mathematics.