Search results
Results from the WOW.Com Content Network
A product of monic polynomials is monic. A product of polynomials is monic if and only if the product of the leading coefficients of the factors equals 1. This implies that, the monic polynomials in a univariate polynomial ring over a commutative ring form a monoid under polynomial multiplication.
The roots of the characteristic polynomial () are the eigenvalues of ().If there are n distinct eigenvalues , …,, then () is diagonalizable as () =, where D is the diagonal matrix and V is the Vandermonde matrix corresponding to the λ 's: = [], = [].
Given two polynomials p and q of respective degrees m and n, if their monic greatest common divisor g has the degree d, then there is a unique pair (a, b) of polynomials such that a p + b q = g , {\displaystyle ap+bq=g,}
The minimal polynomial f of α is unique.. To prove this, suppose that f and g are monic polynomials in J α of minimal degree n > 0. We have that r := f−g ∈ J α (because the latter is closed under addition/subtraction) and that m := deg(r) < n (because the polynomials are monic of the same degree).
Applied to the monic polynomial + = with all coefficients a k considered as free parameters, this means that every symmetric polynomial expression S(x 1,...,x n) in its roots can be expressed instead as a polynomial expression P(a 1,...,a n) in terms of its coefficients only, in other words without requiring knowledge of the roots.
It may also be defined as the monic polynomial with integer coefficients that is the minimal polynomial over the field of the rational numbers of any primitive nth-root of unity (/ is an example of such a root). An important relation linking cyclotomic polynomials and primitive roots of unity is
Given a quadratic polynomial of the form + + it is possible to factor out the coefficient a, and then complete the square for the resulting monic polynomial. Example: + + = [+ +] = [(+) +] = (+) + = (+) + This process of factoring out the coefficient a can further be simplified by only factorising it out of the first 2 terms.
The characteristic equation, also known as the determinantal equation, [1] [2] [3] is the equation obtained by equating the characteristic polynomial to zero. In spectral graph theory, the characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix. [4]