Search results
Results from the WOW.Com Content Network
In nuclear and materials physics, stopping power is the retarding force acting on charged particles, typically alpha and beta particles, due to interaction with matter, resulting in loss of particle kinetic energy. [1] [2] Stopping power is also interpreted as the rate at which a material absorbs the kinetic energy of a charged particle.
The Bethe formula or Bethe–Bloch formula describes the mean energy loss per distance travelled of swift charged particles (protons, alpha particles, atomic ions) traversing matter (or alternatively the stopping power of the material). [1]
Whilst most acknowledge the originality of the formula and Taylor's broad big-game hunting experience with a wide variety of cartridges, the Taylor KO factor is source of some debate amongst modern gun writers, some describing it as peculiar, antiquated, inaccurate and an unfounded theory, others stating it is a useful tool but stressing that ...
Stopping power is the ability of a weapon – typically a ranged weapon such as a firearm – to cause a target (human or animal) to be incapacitated or immobilized. Stopping power contrasts with lethality in that it pertains only to a weapon's ability to make the target cease action, regardless of whether or not death ultimately occurs.
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension Number of atoms N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0
Similarly, the energy loss per unit path length, the 'stopping power', depends on the type and energy of the charged particle and upon the material. The stopping power and hence, the density of ionization, usually increases toward the end of range and reaches a maximum, the Bragg Peak, shortly before the energy drops to zero. [1]
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
Hence nuclear stopping power is not contained in LET. The appropriate SI unit for LET is the newton, but it is most typically expressed in units of kiloelectronvolts per micrometre (keV/μm) or megaelectronvolts per centimetre (MeV/cm). While medical physicists and radiobiologists usually speak of linear energy transfer, most non-medical ...