Search results
Results from the WOW.Com Content Network
The birthday problem can be generalized as follows: Given n random integers drawn from a discrete uniform distribution with range [1,d], what is the probability p(n; d) that at least two numbers are the same? (d = 365 gives the usual birthday problem.) [17] The generic results can be derived using the same arguments given above.
A naive application of the even-odd rule gives (,) = = () ()where P(m,n) is the probability of m people having all of n possible birthdays. At least for P(4,7) this formula gives the same answer as above, 525/1024 = 8400/16384, so I'm fairly confident it's right.
The name is based on the birthday paradox. Choose m birthdays in a year of n days. List the spacings between the birthdays. If j is the number of values that occur more than once in that list, then j is asymptotically Poisson-distributed with mean m 3 / (4n).
A birthday attack is a bruteforce collision attack that exploits the mathematics behind the birthday problem in probability theory. This attack can be used to abuse communication between two or more parties. The attack depends on the higher likelihood of collisions found between random attack attempts and a fixed degree of permutations ...
If the pseudorandom number = occurring in the Pollard ρ algorithm were an actual random number, it would follow that success would be achieved half the time, by the birthday paradox in () (/) iterations. It is believed that the same analysis applies as well to the actual rho algorithm, but this is a heuristic claim, and rigorous analysis of ...
Cheryl's Birthday" is a logic puzzle, specifically a knowledge puzzle. [ 1 ] [ 2 ] The objective is to determine the birthday of a girl named Cheryl using a handful of clues given to her friends Albert and Bernard.
In Ars Conjectandi (1713), Jacob Bernoulli considered the problem of determining, given a number of pebbles drawn from an urn, the proportions of different colored pebbles within the urn. This problem was known as the inverse probability problem, and was a topic of research in the eighteenth century, attracting the attention of Abraham de ...
The problem in Equihash is to find distinct, -bit values ,,..., to satisfy () ()... = such that (...) has leading zeros, where is a chosen hash function. [1] In addition, there are "algorithm binding conditions" which are intended to reduce the risk of other algorithms developed to solve the underlying birthday problem being applicable.