Search results
Results from the WOW.Com Content Network
The combustion of ethane releases 1559.7 kJ/mol, or 51.9 kJ/g, of heat, and produces carbon dioxide and water according to the chemical equation: 2 C 2 H 6 + 7 O 2 → 4 CO 2 + 6 H 2 O + 3120 kJ. Combustion may also occur without an excess of oxygen, yielding carbon monoxide, acetaldehyde, methane, methanol, and ethanol.
1 Material Safety Data Sheet. ... Enthalpy of combustion, ... Ethane vapor pressure vs. temperature. Uses formula ...
A complete set of equations for the combustion of a hydrocarbon in the air, therefore, requires an additional calculation for the distribution of oxygen between the carbon and hydrogen in the fuel. The amount of air required for complete combustion is known as the "theoretical air" or "stoichiometric air". [ 3 ]
Since the heat of combustion of these elements is known, the heating value can be calculated using Dulong's Formula: HHV [kJ/g]= 33.87m C + 122.3(m H - m O ÷ 8) + 9.4m S where m C , m H , m O , m N , and m S are the contents of carbon, hydrogen, oxygen, nitrogen, and sulfur on any (wet, dry or ash free) basis, respectively.
Standard enthalpy of combustion is the enthalpy change when one mole of an organic compound reacts with molecular oxygen (O 2) to form carbon dioxide and liquid water. For example, the standard enthalpy of combustion of ethane gas refers to the reaction C 2 H 6 (g) + (7/2) O 2 (g) → 2 CO 2 (g) + 3 H 2 O (l).
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer
The constant volume adiabatic flame temperature is the temperature that results from a complete combustion process that occurs without any work, heat transfer or changes in kinetic or potential energy. Its temperature is higher than in the constant pressure process because no energy is utilized to change the volume of the system (i.e., generate ...
The largest part of most combustion gas is nitrogen (N 2), water vapor (H 2 O) (except with pure-carbon fuels), and carbon dioxide (CO 2) (except for fuels without carbon); these are not toxic or noxious (although water vapor and carbon dioxide are greenhouse gases that contribute to climate change).